Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chin Fei Chee, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=168 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.022$
$w R$ factor $=0.056$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua(trifluoroacetato)triphenyltin-15-crown-5 (2/1)

In the centrosymmetric title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{5}$, the $1,3-\mathrm{O}$ atoms (positions 1 and 7) of the 1,4,7,10,13-pentaoxacyclopentadecane moiety are hydrogen bonded to the water molecule of the trans $-\mathrm{C}_{3} \mathrm{SnO}_{2}$ trigonalbipyramidal organotin moiety that lies on one side of the cyclic polyether $[\mathrm{O}($ water $) \cdots \mathrm{O}($ crown ether $)=2.800(4)$ and 2.837 (4) \AA]; the 2,4-O atoms (positions 4 and 10) are hydrogen bonded to the inversion-related organotin moiety that lies on the other side [O (water) $\cdots \mathrm{O}$ (crown ether) $=$ 2.768 (3) and 2.881 (4) Å].

Comment

The reaction of triphenyltin trifluoroacetate with 18-crown-6 affords a dinuclear compound in which an aquatrifluorotriphenyltin entity interacts with the polyether through its coordinated water. The compound, $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnO}_{2} \mathrm{CCF}_{3}\right)$-$\left.\mathrm{H}_{2} \mathrm{O}\right]_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{Sn} \leftarrow \mathrm{O}($ water $)=2.361$ (9) \AA A $]$, exists as a $1 / 3$ co-crystal with $\left.\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnO}_{2} \mathrm{CCF}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Amini et al., 2003). Disorder in $\left.\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnO}_{2} \mathrm{CCF}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2} \cdot-$ $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}$, which lies on a threefold axis, precluded the elucidation of the nature of the hydrogen-bonding interaction. The aquatrifluoroacetatodiphenylmethyltin homolog, $\left[\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CH}_{3}\right) \mathrm{SnO}_{2} \mathrm{CCF}_{3}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}[\mathrm{Sn} \leftarrow \mathrm{O}($ water $)=$ 2.483 (5) \AA] , is not disordered; the cyclic polyether uses its 1,3substituents to interact with the aquatrifluoroacetatotriorganotin entity that is on one side of the ring, and its 4,6-substituents with the entity on the other side [O(water)... O (crown ether) $=2.901$ (8), 2.983 (7) \AA] (Amini, Yousefi \& $\mathrm{Ng}, 2002$).

(I)

The title compound, (I) (see Scheme), adopts a similar centrosymmetric structure (Fig. 1); as with the 18 -crown- 6 complex, for which four of the six O atoms are involved in hydrogen-bonding interactions, in this 15 -crown- 5 complex, four of the five O atoms are linked to the coordinated water molecule by hydrogen bonds. The 15 -membered cyclic polyether is disordered over a center of inversion, and the O atoms all point towards the middle of the ring (Fig. 2). On the other hand, in the only other example of 15 -crown- 5 affording a complex with an organotin compound, the five O atoms point

Received 14 March 2003
Accepted 21 March 2003 Online 31 March 2003

Figure 1
ORTEPII (Johnson, 1976) plot of (I), with ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. The unlabeled part of the dimer is related to the labeled part by the symmetry operation ($1-x, 1-y, 1-z$). The second component of the disorder is not shown.

Figure 2
ORTEPII (Johnson, 1976) plot of the 15 -crown- $5 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ portion of the title dinuclear complex, without disorder [symmetry code: (i) $1-x$, $1-y, 1-z]$. The ether O atom that is not involved in hydrogen bonding (O7) has a marginally larger equivalent isotropic displacement parameter than the other O atoms.
away from the middle, and there is no interaction with the diaquadichlorodimethyltin entity (Amini et al., 1994a; Yap et al., 1996). The tin-water bond distance $[\mathrm{Sn} \leftarrow \mathrm{O}$ (water) $=$ 2.407 (1) \AA] in the title compound is somewhat shorter than the distances found in the other aquacarboxylatotriorganotin complexes, but much longer than those found in the diaquadichlorodiorganotin adducts of 18-crown-6, i.e. $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}$ (Amini et al., 1984), $\left[\left(\mathrm{CH}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}$ (Amini et al., 1994b) and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{2} \cdot \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}$ (Amini, Amirreza et al., 2002), owing to the weaker Lewis acidity of the triorganotin acceptor.

Experimental

Triphenyltin trifluoroacetate $(2.31 \mathrm{~g}, 5.0 \mathrm{mmol})$ and 15 -crown- 5 $(0.55 \mathrm{~g}, 2.5 \mathrm{mmol})$ were heated in a small volume of acetone. The solvent was removed and the product recrystallized from ethanol to afford the title complex (m.p. 412-414 K). The formulation was
established by ${ }^{1} \mathrm{H}$ NMR spectral analysis [${ }^{1} \mathrm{H}$ in CDCl_{3} (δ in p.p.m.): $4.07\left(\mathrm{H}_{2} \mathrm{O}\right)$, $3.15\left(-\mathrm{CH}_{2}-\right)$, $\left.7.35-7.79\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]$.

Crystal data

$\begin{aligned} & {\left[\mathrm{Sn}_{\left.\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \cdot-}^{\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{5}}\right.} \end{aligned}$	$\begin{aligned} & Z=1 \\ & D_{x}=1.512 \mathrm{Mg} \mathrm{~m}^{-3} \end{aligned}$
$M_{r}=1182.31$	Mo K α radiation
Triclinic, $P \overline{1}$	Cell parameters from 6960
$a=10.3917$ (6) \AA	reflections
$b=11.1154$ (7) \AA	$\theta=1.8-26.5^{\circ}$
$c=12.3300$ (8) \AA	$\mu=1.04 \mathrm{~mm}^{-1}$
$\alpha=110.611$ (1) ${ }^{\text {® }}$	$T=168$ (2) K
$\beta=97.621$ (1) ${ }^{\circ}$	Plate, colorless
$\gamma=97.198(1)^{\circ}$	$0.50 \times 0.13 \times 0.12 \mathrm{~mm}$
$V=1298.4$ (1) \AA^{3}	
Data collection	
Bruker AXS SMART area-detector diffractometer	5179 independent reflections 4618 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.022$
Absorption correction: multi-scan	$\theta_{\text {max }}=26.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-12 \rightarrow 12$
$T_{\text {min }}=0.571, T_{\text {max }}=0.831$	$k=-13 \rightarrow 13$
16310 measured reflections	$l=-12 \rightarrow 15$
Refinement	
Refinement on F^{2}	H atoms treated by a mixture of
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$	independent and constrained
$w R\left(F^{2}\right)=0.056$	refinement
$S=0.98$	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0369 P)^{2}\right]$
5179 reflections	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
400 parameters	$(\Delta / \sigma)_{\text {max }}=0.001$
	$\Delta \rho_{\text {max }}=0.69 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.57 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Sn} 1-\mathrm{C} 1$	$2.131(2)$	$\mathrm{Sn} 1-\mathrm{O} 1$	$2.186(2)$
$\mathrm{Sn} 1-\mathrm{C} 7$	$2.137(2)$	$\mathrm{Sn} 1-\mathrm{O} 1 w$	$2.407(1)$
$\mathrm{Sn} 1-\mathrm{C} 13$	$2.124(2)$		
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 7$	$117.4(1)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O} 1$	$96.7(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 13$	$120.9(1)$	$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{O} 1 w$	$86.4(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 1$	$87.6(1)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{O} 1$	$96.5(1)$
$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{O} 1 w$	$86.2(1)$	$\mathrm{C} 13-\mathrm{Sn} 1-\mathrm{O} 1 w$	$86.5(1)$
$\mathrm{C} 7-\mathrm{Sn} 1-\mathrm{C} 13$	$120.5(1)$	$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 1 w$	$173.8(1)$

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 3$	0.84 (1)	2.07 (3)	2.837 (4)	152 (5)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O}$	0.85 (1)	1.96 (1)	2.800 (4)	176 (4)
$\mathrm{O} 1 w-\mathrm{H} 1 w 3 \cdots \mathrm{O} 4^{\text {i }}$	0.85 (1)	1.93 (1)	2.768 (3)	172 (4)
$\mathrm{O} 1 w-\mathrm{H} 1 w 4 \cdots \mathrm{O}^{\text {i }}$	0.85 (1)	2.05 (2)	2.881 (4)	168 (4)

Symmetry code: (i) $1-x, 1-y, 1-z$.

The 15 -crown- 5 ring is disordered over a center of inversion $\left(\frac{1}{2}, 2, \frac{1}{2}\right)$, and it was refined subject to the following restraints: $\mathrm{C}-\mathrm{C}=1.53$ (1), $\mathrm{C}-\mathrm{O}=1.41$ (1) and $\mathrm{C}-\mathrm{O}-\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{O}=2.37$ (1) \AA. The atoms are of half-site occupancy. The trifluoromethyl group is disordered over two positions; as their occupancy refined to nearly 0.5 , the occupancy was fixed as 0.5 . The $\mathrm{C}-\mathrm{F}$ distances were restrained to be approximately equal; the F \cdots F lengths were similarly restrained. The displacement parameters of the primed and umprimed F atoms were set equal.

Two pairs of disordered water H atoms were located and refined; the occupancy factor of each of the four H atoms is 0.5 . One pair
($\mathrm{H} 1 w 1$ and $\mathrm{H} 1 w 2$) interacts with two O atoms (O 3 and O 5) of the crown ether, and the other pair ($\mathrm{H} 1 w 3$ and $\mathrm{H} 1 w 4$) with two symmetry-related O atoms [$\mathrm{O} 4^{\mathrm{i}}$ and O^{i}; symmetry code: (i) $1-x$, $1-y, 1-z]$. The $\mathrm{O}-\mathrm{H}$ distance was restrained to 0.85 (1) \AA and the $\mathrm{H} \cdots \mathrm{H}$ distance to 1.39 (1) \AA. The displacement parameters of the H atoms were set to $1.2 U_{\text {eq }}(\mathrm{O})$.

The carbon-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ for the aromatic H atoms and $\mathrm{C}-\mathrm{H}=0.99 \AA$ for the aliphatic H atoms. Their displacement parameters were set to $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Dr Jan Wikaira of the University of Canterbury for the diffraction measurements, and the

University of Malaya (Nos. F0146/2002B and F0717/2002A) for supporting this work.

References

Amini, M. M., Amirreza, A., Yousefi, M., Foladi, S. \& Ng, S. W. (2002). Acta Cryst. E58, m58-m60.
Amini, M. M., Foladi, S., Aghabozorg, H., Rae, A. D. \& Ng, S. W. (2003). Chin. J. Struct. Chem. 22, 77-83.

Amini, M. M., Rheingold, A. L., Taylor, R. \& Zuckerman, J. J. (1984). J. Am. Chem. Soc. 106, 7289-7291.
Amini, M. M., Yousefi, M. \& Ng, S. W. (2002). Acta Cryst. E58, m118-m120.
Amini, M. M., Zuckerman, J. J., Rheingold, A. L. \& Ng, S. W. (1994a). Z. Kristallogr. 209, 613-614.
Amini, M. M., Zuckerman, J. J., Rheingold, A. L. \& Ng, S. W. (1994b). Z. Kristallogr. 209, 682-684.
Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yap, G. P. A., Counterman, A. E., Amini, M. M., Ng, S. W. \& Rheingold, A. L. (1996). Main Group Chem. 1, 359-363.

